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Variable-coefficient wave equations with exact spreading 
solutions 

W E Couch and R J Torrence 
DePa"1 of Mathematics and Statistics University of Calgary, Calgary, AI- Canada 
T2N IN4 

Received 14 Decemba 1992 

Abstract. We discuss a family of variable-coefficient linear wave equations that are exactly 
solved by a generalization of progressing waves that spread out as lhey propagate. This can 
be viewed as a general ion to some variable-coefficient equations of the dispersion theory 
method that is standard for connant coefficient equations. The method is illustrated by solving 
some physically interesting equations. 

1. Inhductinn 

In this paper we shall solve a significant family of variableaefficient linear wave equations 
by methods that can be viewed as a generalization of the dispersion theory techniques 
standard for constant coefficient linear wave equations. The solutions will be a natural 
generalization of progressing waves and will be exact in a useful sense, and they will in 
general be dispersive in thai they will spread out as they propagate. Our results will be 
obtained by applying a new theorem regarding wave equations that may also have other 
interesting consequences. 

The ordinary wave equation in one space dimension 

(a,? - a,")@ = 0 (1.1) 

is satisfied by the waves 

(1.2) 4 = e i ( w r - h l  

when 

wz-  kZ = 0 .  ( 1 . 3  
All of these waves have the same phase velocity, w / k  = 1, up to sign, and it follows that 
if we form two solutions depending on arbitrary functions ga(k) by writing 

they will move in the positive and negative x directions, respectively, and they will propagate 
without spreading out. Thus equation &I), and the waves (l.4), are commonly referred 
to in the literature as being 'non-dispersive'. In this paper we shall call any wave in one 
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F b r e  l.'The propagation of non-spreading waves. 

space dimension a non-spreading wave when, if its support at some time to falls between 
a pair of retarded (advanced) characteristics U,, 112 (U,, v;?), where f = U + U. x = v - U. 
it does so at all times t .  .We shall also call any wave equation in one space dimension a 
non-spreading wave equation when its general solution can be expressed in terms of such 
waves. The propagation of non-spreading waves is pictured in figure I .  

Of course the nondispersive equation (1.1) and waves (1.4) exemplify non-spreading, 
but we have introduced the new word to describe and denote the general phenomenon 
because the term 'nondispersive' is usually applied in the context of constant coefficient 
wave equations, while in this paper we are interested in wave equations with variable, i.e. 
spacetime dependent coefficients. 

Non-spreading equations like (1.1) with exact non-spreading wave solutions like (1.4) 
are a comparitive rarity, as we shall see in section 2, but there is also a class of wave 
equations that are exactly solvable by standard methods in terms of waves that are not 
non-spreading. If (1. I )  is generalized to 

(a: - a: + mz)$ = o (1.5) 

where m is a constant, (1.2) is a solution when 

(1.6) 

Given (1.6). waves with different wavenumbers k have different phase velocities w/k  = 
[ I  + (m2/k2)J'/2, up to sign, and for this reason the solutions 

spread out as they propagate. Thus the equation (1.5) and its solutions (1.7) are customarily 
referred to as being 'dispersive', and are examples of what we shall call spreading equations 
and spreading solutions, respectively. The further generalization of (1.5) U, constant 
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coefficient linear wave equations of any order is handled in a similar fashion to provide 
solutions analagous to (1.7). which are generally spreading, with the algebraic relation (1.6) 
generalizing to a polynomial condition 

Q(o, k )  = 0 (1.8) 

to be solved for w(k). These dispersion theory methods are discussed with care in many 
places, and an asymptotic analysis of the resulting solutions leads naturally to the important 
notion of group velocity, u,(k) = do/dk, the velocity of propagation of the wavenumber 
k DI. 

There do exist in the literature some attempts to generalize dispersion theory methods 
to deal with wave equations with spacetime dependent coefficients. The most ambitious 
work along these lines appears to be Whitham’s ‘variational approach’ [l-31, however it 
seems to be both more and less than we have in mind here. It is more in the sense that 
it is even applicable to nonlinear equations, while we shall consider only linear equations. 
It is less in that when it is specialized to linear equations it yields an inexact analysis 
for waves whose period and wavelength are small compand with the time and distance 
scales for changes in the wave equation’s coefficients, while in this paper we shall present 
a significant family of variable-coefficient linear wave equations with general solutions that 
have exact representations in the same sense that (1.7) exactly solves (1.5). 

Our approach will be to combine a method of exact solvability by means of non- 
spreading waves of a relatively large family of non-spreading equations, with the dispersion 
theory method just illustrated for constant coefficient equations, to obtain exact spreading 
solutions of a class of equations that generalize both of the above families. We first want to 
find a family of variablecoefficient equations that are analogous to (1.1) in the sense that 
they have non-spreading solutions, and in section 2 we shall argue that progressing waves 
[MI are appropriate, although their defining representation is not a direct generalization 
of (1.4). We shall also review a procedure [7,8] for constructing probably all second-order 
linear wave equations in one spatial dimension whose general solutions can be expressed 
as the sum of two progressing waves, which ensures an adequate supply of non-spreading 
waves and equations for our purposes, and we shall give a few special classes of such 
variablecoefficient wave equations that will be useful later in the paper for illushative 
purposes. In section 3 we shall prove two theorems that show how to use solutions to pairs 
of wave equations of appropriate types to generate solutions to related, more complicated, 
wave equations. The theorems are then applied to the consbuction of exact spreading 
solutions of a relatively wide class of variable-coefficient equations, which is our main 
result. In the first instance these waves will be given by the action of a ‘progressing wave 
operator’, to be defined in section 2, on spreading ‘potentials’, but one easily obtains an 
altemative representatioxthat is a natural generalization of (1.7). In section 4 we shall 
illustrate the method by obtaining a novel representation of the general solution of the 
massive Klein-Gordon equation in Minkowski spacetime, and the general solution to an 
equation that govems the development of density perturbations of some physically important 
cosmological spacetimes. 

As far as we know the two theorems of section 3 are new, and lead to what appears 
to us to be a new and useful generalization of conventional dispersion techniques. Most of 
our calculations are done in one space dimension, but it will be clear in sections 3 and 4 
that these results have ,immediate implications for higherdimensional spacetimes as well. 
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2. Progressing waves 

If we rewrite (1.1) in the form 

a,""$ = o 

where f = U + U, and x = U - U, its general solution is obviously a linear combination of 

4i = f(f 'F.4 (2.2) 

where f is any sufficiently differentiable function. The. propagation properties illustrated 
in figure 1 are more immediately evident with the representation (U), and we shall 
generalize the notion of nowspreading waves by starting with the latter. It is clear that 
those propagation properties will be retained if we replace (2.2) by 

where c*(u, U) are fixed functions in the sense that they will depend on and be determined by 
the wave equation to be solved, while f ( t  ~ x )  a ~ e  any suffiently differentiable functions of 
one variable. Waves of precisely this form have been discussed in the literature, for example 
by Courant and Hilbert [SI. who referred to them as 'relatively undistorted propssing 
waves', by Friedlander [6], who called them 'simple progressing waves'.and more recently 
by Eckhoff 191, for whom they are 'dispersion free waves'. and Hillion [IO], who labelled 
them 'dispersionless waves'. Whatever they are called, it is clear that the waves (2.3) 
have the nowspreading propagation propelty depicted in figure 1, despite the distortion 
during propagation caused by the coefficient functions $(U, U). The simple observation 
with which we begin is that if we follow [5.6] and define aprogressing wuve of order N to 
be a function of the fonn 

(2.4) 

where the .:(U, U) are fixed functions, in the above sense, and 

f n ( z )  = dfn-t(z)/h (2.3 

with f&) any sufficiently differentiable function of one variable, then (2.4) also has the non- 
spreading propagation property of (2.3). the latter being subsumed under (2.4) as progressing 
waves of order 0. The special fonn of the functions f&) given by (2.5) anticipates the 
eventual requirement that we shall want (2.4) to satisfy some Linear wave equation, and 
is relevant to non-spreading as it restricts the support of 4 to the support of fo. The 
specialization of (24) obtained by assuming f&) = et leads to the generalizations of (1.2) 
and of (1.4) appropriate to non-spreading variablecoefficient equations. That the waves 
(2.4) have the same simple propagation property as (2.3) is obvious, but seems not to have 
been exploited before as we intend to do here. 

A systematic search for wave equations with non-spreading general solutions was 
undertaken by Kundt and Newman [7] in 1968. A brief survey of their results. as extended 
in [81. is appropriate hen. It is not difficult to show that every second-order linear wave 
equation in one space dimension can be put into either one of the two forms (a& -b)@ = 0 
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and (a&, - d ) @  = 0. where a ,  b, c and d depend in general on U and U. If we define 
io = a, i i  = b, &I = @, and inductively define (jk]kEz, (@&Z by 

we obtain a countable set of equations 

(a& - j w M k  = o k E z (2.8) 

while if we define 10 = c, 1-1 = d ,  @O = @, and inductively define (ik]k&!. (@&e2 by 

(2.9) 
(2.10) 

we obtain a second countable set 

(a,ika, - i k - l ) @ k  = o k E z . (2.11) 

It is easy to confirm that for all k E Z the kth equation in (28), corresponding to the 
coefficients jk, j k + l ,  and the kth equation in (2.11). corresponding to the coefficients k ,  
ik-I ,  are equivalent with 

j k i k  1 @k =ik@k k E z .  (2.12) 

It can also be seen that all of the equations in the combined sets (2.8). (2.1 1) are equivalent 
in the Sense that a solution of any one equation generates a solution of every other equation 
in both sets. Thus a solution & to the k~ equation in (2.8) immediately gives solutions 
to the kth equation, k > ko, in (2.8) by repeated applications of (2.7). But it also gives a 
solution to the ko equation in (2.11) through (2.12), which generates solutions to the kth 
equation, k < ko, in (2.11) by repeated applications of (2.10). Then (2.12) gives us solutions 
to the rest of (2.8) and (2.1 1). 

The implication of these results for progressing waves, and thus for non-spreading 
waves, is seen as follows. Given a wave equation in the form 

( a m ,  - = o (2.13) 

we say the 'substitution sequence' (jk)k,Z is double terminating when jNltl = 0 and 
I - N ~ - I  = l/j-No-l = 0 for some N I  > 0, -No < 0. But it follows, using (2.6H2.11). that 
(2.13) is solved by &I = 4- +lo@+ where 

@+ = (r:faui-l) .. .(t,t,a,i-N,,)f(t - X )  (2.14) 

and 

4- = ( j ; ' a , i l ) . . . ( j ~ ~ a , j N , ) f ( t + x )  (2.15) 

respectively, where f (z)  is any sufficiently differentiable function of one variable. However 
it is obvious that if one carries out the differentiations in (2.14) and (2.15) and p u p s  the 
resulting terms according to the order of differentiation of the functions f(rrx), the result 
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will be progressing waves of order NO and N,, respectively. General formulas for the 
coefficients .,'(U, U) and c;(u, U) of (24) can be written in terms of the I l k )  and their 
iterated U derivatives, and the ( j k )  and their iterated U derivatives, respectively, but they are 
not particularly useful here. The derivation of these solutions, (2.14) and (2.15). of (2.13) 
depended on the double termination conditions, and one readily observes that this amounts, 
through (2.6) and (2.9). to a pair of ostensibly intractable nonlinear differential conditions 
of order ~ N I  and 2N0, respectively, on the coefficients jo and j l  of the original equation 
(2.12). However, it was observed in [SI that to satisfy these conditions is equivalent to 
finding a solution of the finite Toda lattice [ 1 I] with free ends, of length NO + N I  + 1. and 
since a general solution to that integrable dynamical system is available [K!], all double 
terminating substitution sequences, and thus probably all wave equations (2.13) that are 
non-spreading, are, in principle, known The general construction is complicated, and for 
the details the reader is referred to [8,12]. 

In the next section we shall want the specialization of the material just reviewed to the 

i o =  1 j - k  = jcl j l ( u ,  U) = j ; ( u  - U )  = j : ( x )  (2.16) 

W E Couch and R J Torrence 

Cases 

and 

j o  = I j-k = j;' jl(u. U) = jT(u + U )  = j : ( t )  (2.17) 

where in each case the second equation is a consequence [7,8] of j o  = I ,  and implies in the 
case of double termination that No = N I  = N. Using the fact that = &I when jo  = 1, 
and a, = a, -a, and a, = 8, +a,, it is now sbaightfonvard to derive that (2.14) and (2.15) 
can be combined into 

(2.19) 

for j1 = j , " (x ) ,  where f , ( t  ~ x )  = ~ 3 ~ f ~ - ~ ( t  T x ) .  The functional form of the coefficients 
c.'(z) is determined by the functional forms j : (z)  or $(z) and is given by the same formula 
for z = t and z = x .  and for this reason the c:(z) can simply be written as cn(z) in these 
two cases. If we now define the progressing wave operator 

N 
.z : ifw) - i f w  : f ( z )  - &(z)a,N-nf(z) 

d = ~ f ( r r x )  (221) 

(2.20) 
"=O 

then, putting fo(z) = f(z),  (2.18) and (2.19) take the succinct forms 
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respectively. There are two aspects of the definition of Jz that should be emphasized: 
(i) If a substitution sequence [ jk(z)}  does not double terminate then the coefficients 
{c.(z)], and thus the progressing wave operator Jz, are not defined, and (ii) different 
double terminating substitution sequences imply diffemt sets of coefficients c&), and 
thus different progressing wave operators Jz, and it is sometimes expedient to stress this 
by writing J ( ( j k ] ) .  It is obvious that the more general progressing waves $+ and @+ of 
(2.14) and (2.15) could also be written as an appropriate pair of operators on f ( t  x ) ,  
hut it is precisely the specialized forms (2.21) and (2.22). defined in terms of the single 
operator Jz defined by (220), that will play a key role in the theorems to be proved in the 
next section. 

We shall conclude this section by recording a few families of double terminating 
substitution sequences of the types (2.16) and (2.17) that will be of use in section 4; these 
and many others were derived in [13], although that paper made no direct use of the concept 
of progressing wave. Three families with x dependence are generated from jo = 1 and 

where l E Z+ and d is an arbitrary constant, and the corresponding sequences, of total 
length 2l+ 1. are given by 

(2.24) 

respectively, with j s , (x )  = l / j f ( x ) ,  and three more with t dependence are generated from 
j o =  1 and 

[ ( I  + I)/tZ 

$0) = ! ( I  + 1)d2/ sin’ dt  I I ( /  + l)d’/ sinh’ dt  

where 1 E Z+ and again d is any constant, and the corresponding sequences, of total length 
2l+ 1, are given by 

k 
(d-’ sinhdt)-% n[l(l+ 1) - (i - t)i] 

i=l 

(2.26) 
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respectively, with ifk@) = l / jT ( t ) .  The corresponding Toda lattice motions are simple and 
interesting, and were discussed in some detail in 1141. For the first case in each set, i.e. for 
j s ( x )  = -1(1+ I)/x2 and jT( t )  = 1(1+ l)/t2, one gets [131 

W E  Couch and R J Torrence 

Ck(2 )  = (-2)14(l+ k)!/k!(l - k)!zk 

as the c&) are clearly insensitive to the sign of j , .  It follows tM 

(2.27) 

[a: -a: + [ ( I  + 1)/x21,$ = o (2.28) 

is satisfied by the non-spreading waves 

(2.29) 

In elementary texts the solutions to (2.28) are usually expressed in terms of Bessel functions. 
If we substiute ei"TxJ for f (f x )  in (2.29) we obtain 

(2.30) 

where the BI are Bessel polynomials of degree 1, which are carefully discussed by Krall 
and Frink 1151. If we scale the frequency o and the wavenumber k, with o = k, into 
(230) by t 3 of and x + kx, and ignore the overall factor (*2i)', our solutions to (2.28) 
are identical to those given in [15], which are explicitly related there to Bessel functions 
of order 1 + k, and to solutions of the ordinary wave equation in Minkowski spacetime. 
The generation of the coefficients cn(z) that appear in the definition (2.20) of 3 seems to 
yield relatively complicated expressions in all other cases. Even with the relatively simple 
formulas for the { j h )  in the other two cases in (2.24) and (2.26), the c&) are given by 
rational functions in the circular, or hyperbolic, functions, of increasing complexity with 
increasing n. Of course they are easily calculated for small values of n. 

3. The basic theorems 

In this section we shall apply the progressing wave operator JZ to provide exact solutions 
to a class of variablecoefficient wave equations with spreading solutions, as promised. The 
result depends on the following theorem. 
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Theorem I. If the pair jo = 1 and j : ( t )  generate a double terminating substitution 
sequence, in which case 

[a: - a,' - j T ( t ) ]  J N  7 x) = o (3.1) 

holds, and if 

[a: - a: - h(x) ]  p ( t ,  x )  = 0 

then 

[a: - 3,' - h(x) - j : ( t ) ]  ~ p ( t , x )  = 0 .  

Proof. It follows from (3.1) and the fact that J and 8,' commute that 

where f is any sufficiently differentiable function. But as there is no x dependence in the 
operator in (3.5). it is appropriate to rewrite the latter as 

[A# - $3 + j T ( t ) ~ ]  f(t) = 0 . (3.6) 

If one substitutes the definitions of jf(t) and J,((j:(r)}) in (3.6) the result is a finite series 
of the fom C,d,,f[")(f) = 0, and the independence of the derivatives of f ( r )  shows that 
we must have d. = 0 for all n. Thus (3.5) should be read as an identity 

J X d / W z  - (d/WzA + j : ( t ) J  = 0 (3.7) 

where (3.7) can be applied to any sufficiently differentiable function o f t ,  and the presence 
of other parameters, such as x in (3.5). is irrelevant. Now we have 

[a: - a," - h ( x )  - j f ~ ) ]  A P ( X ,  t )  = [-a: - hix)]  p ( t , x )  + [a: - j : ( t ) ]  ~ p ( t , x )  
(3.8) 

since Z and 8: + h(x)  commute, so using (3.6) we obtain 

[ # - a , ' - h ( x ) -  j : ( r ) ] z p ( t , x )  = ~ [ a : - a : - h ( x ) ] p ( r , x )  = O  (3.9) 

where the very last equality is a consequence of (3.2). This establishes (3.3). the desired 
result. 

Corollary. There is an analogous implication where we replace j:(r) by g(r), h(x)  by 
jf(x), and A(($')) by Jx7,((jks1). 
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The function p ( t ,  x )  is not provided by the theorem, but must be found by solving (3.2) 
by some means. One case where this is possible, and where the theorem provides a useful 
exact general solution of (3.4). is when g(t)  = jT(t) ,  i.e. when j , ( f , x )  = j s ( x )  + jT(f), 
with $ ( x )  and j:( t)  each generating their own double terminating substitution sequences, 
( j ,"(x)) .  IjT(01. leading to operators & ( { j S ( x ) ) ) .  JX( jT( t ) l )  defined by (2.20) in terms 
of the calculable coefficients { G ( x ) ] ,  (cT(r)}, respectively. As an example the equation 

(3.10) 

has the general solution ,$ = 4+ + qL where 

@* = &Af@ T X )  

Of course it is not necessary that j f ( x )  and jT( t )  generate cn(x) and cn(t) of the same 
form as in this example. Since (3.1 1) is itself a progressing wave, as will be &7,7rf(t r x )  
in general, it follows that if j s ( x )  and jT(t )  each generate double termination substitution 
sequences, then so does j s ( x )  + jT( t ) .  This special consequence of theorem 1 was already 
noted and proved in [ 161. If one retraces the path from progressing waves back to finite 
Tcda lattice motions, it is clear that there is a superposition rule whereby any two motions 
of one-dimensional finite Toda lattices of length 1 and m, respectively, can be combined to 
give a motion of a two-dimensional Toda lattice, generally of length I +m, but we shall not 
pursue this here. 

A more general situation, and our primary interest in this paper, is that where h(x)  is 
a function such that we can write the exact general solution p ( l ,  x )  of (3.2) as the sum of 
two spreadiig waves. It follows from theorem 1 that the action of the progressing wave 
operator Jt({j : ( f ) ) )  on p ( t .  x )  provides the general solution of equation (3.3), which gives 
us the exact, spreading, general solution of a linear wave equation that includes the variable- 
cccfficient j y ( t ) .  This will certainly be the case when h ( x )  in (3.2) is a constant, so that the 
general solution of (3.2). obtained by the usual dispersion theory methods, is given exactly 
in terms of the spreading waves (1.7). Such cases will result in an obvious generahation of 
(1.7). where fixed functions of x ,  f ,  k and o ( k )  multiply the exponential function. It is easy 
to see that the usual asymptotic analysis of that form of the solution will yield the usual 
derivation and formula for the group velocity associated with the dispersion relation o ( k ) ,  
as that derivation depends only on the properties of the oscillatory exponential function, 
while other details of the asymptotic analysis will become more complicated. 

The identity (3.9, in the form (3.7). allows us to reformulate the proof of theorem 1 
into the proof of the following more general theorem, which may be useful. 

and 

(3.12) 
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where 'D= and h(z)  are an operator and a function of coordinates X I ,  XZ .  . . . x., both 
commuting with 3, then 

[a: - 2% - h(z) - j T ( t ) ~ ~ p ( t ,  z) = 0. (3.14) 

Proof. Since the single coordinate x was a passive parameter in the proof of theorem 1, 
playing no role in the essential identity (3.7), it can be expanded into a set of coordinates 
denoted by x in the statement of theorem 2, and the latter is proved by the same formal 
steps as was theorem 1. 0 

This higherdimensional analogue of theorem 1 may be valuable in its own right, but 
we shall concentrate on the first theorem in what follows. 

4. Two applications 

The basic results of this paper are theorems 1 and 2, stated and proved in the preceding 
section, and their implications for wave equations with exact spreading solutions. The 
latter will be illustrated in this section with some equations arising in mathematical physics. 
Consider first the Klein-Gordon equation in Minkowski spacetime 

[a: - A + m2]@ = o (4.1) 

where A is the Laplacian and m is a constant. If we express the Laplacian in spherical 
coordinates and put @(r, t ,  0, q) = r@(r,  t)Yfm(O, q), where the fi, are the usual spherical 
harmonics, (4.1) is equivalent to the set of equations 

[ r2 
a: - a: +m2 + I(' - + "1 +(r,  t )  = o I 6 Z+ . (4.2) 

Clearly (4.2) is an example of an equation to which the corollary to theorem 1 is applicable, 
with jT( t )  replaced by g(t)  and h(r)  replaced by j f ( r ) ,  where in this case g(t)  = -m2 
and j r ( r )  = - I (!  + l ) / r* .  Thus we obtain analogues of (3.1) and (3.2) that are precisely 
the non-spreading equation (2.28) and the spreading equation (1.5), respectively. Since the 
general solution of (1.5) is 

m m 
p(r.  t )  = @+(rr 0 + @-(rr 0 = 1, dk gt(k)eiluIk)'-t*l + l m d k  g-(k)eilw*Ytk-kxl (4.3) 

where w(k) = (kz + m2)1/2, it follows from the corollary to theorem 1 that the general 
solution of (4.2) is the spreading wave 

(4.4) 

Passing the differentiation operator through the k-integration allows us to express 
@(r, t ,  0, (p), the general solution of (4.l), in terms of integrals over Bessel polynomials, i.e. 
as a sum with respect to I and m, with arbitrary constant coefficients, of 
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This is a representation of the general solution of (4.2) that is exact in the same sense that 
(1.7) provides an exact solution of (LS), and we see from (4.4) that the solution of the I = 0 
mode of (4.1) serves as a potential for the i > 0 modes of (4.1). 

For our other example we pass to a highly specific problem in cosmology that actually 
prompted the development of the general technique that is OUT main result in this paper. 
The Robertson-Walker spacetime 

W E Couch and R 3 Torrence 

ds2 = H(t)’(-dr’ +dr2 + f2(r)dQ2) 

where dQz = d0’ + sin’ 0 dpz and 

K = + I  (closed) 

K = 0 (flat) 

sinhr K = -1 (open) 

is the most general homogeneous and isotmpic spacetime, and is the starting point for a 
great variety of cosmological investigations. Its perturbations have been extensively studied, 
particularly its density perturbations, as they play an important role in studies of galaxy 
formation in the early universe. A systematic formalism for the analysis of cosmological 
perturbations was recently promoted by Stewart [17], and reviewed and applied in some 
detail by Mukhanov et af [18]. A minor modification of that formalism was suggested by 
Bornbelli et ai 1191 in the context of a discussion of isentropic perfect fluid perturbations. 
In [ 181 and [ 191 it was independently derived that the density pemrbations #(r, t ,  0.9) 
of an isentropic perfect fluid background spacetime are governed by a single scalar wave 
equation that is equivalent to the set of equations 

where #(r, I ,  6’. fp) = #(r, t)Y,,, and &t) and V ( t )  are determined by the background 
spacetime (4.7) through the Einstein field equations. The reader is referred to [I81 or [ 191 
for the details, as our concern here is only with the particular scalar wave equations to 
which (4.8) reduces for some special choices of H ( t )  and K in (4.7). Specifically, if we 
choose H ( t )  and f (r) to have the same functional form, i.e. 

sin z K = +I (closed) 

K = 0 (flat) 

sinhz K = -1 (open) 

then (4.8) reduces to 

(4.9) 

when y = t/a. The corresponding background pressure p and density p are given by 
p = 3 p  = H-’(t ) ,  so these are the physically important ‘radiation dominated‘ universes 
often used by cosmologists. What is of importance to us is the fact that (4.9) is exactly 
solvable by our methods in all three cases, i.e. K = 1, K = 0, K = -1. 
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If we first consider the case K = 0, f ( z )  = z, (4.10) reduces to (3.10). with f replaced 
by y, and q = 1. Thus the general solution in this case is given in terms of the progressing 
waves (3.11) with q = 1. Passing to the case K = 1 ,  f (z)  = sinz, we see that (4.10) 
reduces to the equation 

(4.11) 

But this is exactly solvable with a spreading solution that is obtained by consecutive 
applications of theorem 1 and its corollary. We begin by exactly solving the spreading 
equation (1.5) with m = 1. We then note that (4.1 I )  with I = 0 can be exactly solved with 
a spreading wave by applying theorem 1 ,  since Z/[sin(&y)/fi]' is the second case of 
(225),  with f = y. I = 1, and d = &f, while 1 is independent of y. We can then solve 
(4.1 1) itself by the application of the corollary to theorem 1, since - I ( I  + l)/sin'r is the 
second case of (2.23) with x = r ,  while 1 + Z/[sin(&y)/,/j' is independent of r. The 
result is 

#i. = 3; (c~,"c~)I)  3 ({$(Y)I) LO+ + P-)  (4.12) 

where 

(4.13) 

with o ( k )  = (1 +k*)'/', and 3 and ZY calculated as usual from the substitution sequences 
corresponding to the second cases of (2.23) and (2.25). Once again the differentiation 
operators can be passed though the integration with respect to k to yield representations 
analogous to (4.5); however, the Bessel polynomials will be replaced by rational functions 
in sines and mines of r and a y ,  as appropriate. The third case, with K = -1 and 
f(z) = sinhz, is similar, with hyperbolic functions in place of the circular ones. 

There are in fact other background cosmological spacetimes for which (4.8) is exactly 
sovable by means of progressing waves, as in the first of our three cases, but most of them are 
of little interest because the corresponding pressures and densities are physically unrealistic. 
We are actively looking for other physically realistic cosmological backgrounds for which 
(4.8) can be exactly and generally solved by spreading waves through the application of 
thmem 1, as in the second and third cases just considered. 
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